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Abstract

Although there are disadvantages associated with model
building procedures such as backward, forward and
stepwise procedures (e.g. multiple testing, arbitrary
significance level used in dropping or acquiring
variables), many analysts use these procedures and are not
aware that alternative modeling selection methods exist.
This paper focuses on model selection using the Akaike
Information Criteria (AIC) in the case of linear mixed-
effects models.  AIC’s fundamental concepts are reviewed
and two examples are given to demonstrate its use through
PROC MIXED.  Master-level biostatisticians,
epidemiologists, and others who are working with
longitudinal data are encouraged to investigate AIC as the
tool in modeling repeated measures data.

1.0 Introduction

Model selection is one of the most frequently encountered
problems in data analysis.  In most observational
epidemiological studies, investigators frequently attempt
to construct the most desirable statistical model using  the
popular methods of forward, backward, and stepwise
regression (4).  Of course knowledge of the subject matter
plays an important role in model selection, but if based
strictly on the data, model selection is often carried out
using one of the automated procedures built into the
software, of which the most popular method is perhaps
stepwise model selection. These methods pose the
problem of  the arbitrary selection of the significance
level(s) in allowing a variable to enter into or to be
dropped from the model during  the selection process (1,4
). There is also the problem of multiple testing that comes
with fitting and refitting the model (1,4).  The issue is
made more complicated in the case of  repeated or
longitudinal data where selecting the best model means
not only to select the best mean structure but also the most
optimal variance-covariance structure (10,11).  This paper
reviews another model selection method which helps
eliminate the problems associated with setting an arbitrary
significance level required in automated procedures such
as stepwise.  Using a criterion like AIC for selecting a
model, bypasses the need to specify a significance level in
a model building process. The Akaike Information
Criteria (AIC) and its principles in model selection will be
described.  The paper will also show how one can set up a
model selection strategy using AIC in linear mixed-effects
model framework. AIC and other related criteria (SBC,
HQ, CAIC) are fully available in SAS PROC MIXED.

Real data from two case studies will be presented to show
how model selection using AIC was used to achieve the
desired objective.

2.0 Some Fundamental Concepts of AIC

In order to understand the principle behind AIC, one
needs to return to the definition of the Kullback-Leibler
information (5,8) which is considered to be a measure of
the distance between two density functions.  In a model
selection problem, one would like to select the model
family which performs best.  The distance between the
true model and the selected model can be represented by
the Kullback-Leibler information. If one assumes the true
model’s density to be f (. )  and the joint density function

for the selected model to be g(., )θ
∧

, where θ
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 is the
estimated vector of d parameters by the maximum
likelihood method, then the Kullback-Liebler distance can

be written as K L
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where x is the observed sample data of n independent
observations. In this setup, the expectation of (*) provides
the basis for model selection, and the estimate of this
expectation provides a criterion for model selection. The
asymptotic approximation for the estimation of this
expectation is given as (6,8)
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Notice that the term f x f x dx( ) log( ( ))∫  is dependent

on the true model which is unknown; however, this term is
fixed when comparing between models.  The part of this
estimated expectation of the Kullback-Liebler distance
that is needed in the comparison process is

− +
∧∧ ∧ −

log ( , ) ( )g x traceθ Σ Ω
1

 (2)

which is computable for the parametric model.

When one can assume that the true model is contained
within the family of models from which the fitted model is

obtained then one can write (2) as − +
∧

log ( , )g x dθ
(3).  AIC is basically twice the expression of (3) so  AIC =
-2loglikelihood + 2d (4).  Thus AIC imposes a penalty of
two units per parameter in the model.

Based on AIC , as the model selection criterion, then
among all possible models considered, the one with the
smallest value of AIC is considered to be the best model.
Notice that if the true model f(.) is very different (not
contained in the family model that generates the selected
model) from g(., )θ , then one should compute the trace

term of Σ Ω
∧ −∧ 1

 directly which is more difficult and
computationally expensive.

3.0 Model selection using AIC for linear mixed-
effects models

Suppose there are n independent subjects with mi

correlated measurements, i n= 1 2, ,..., .

The marginal probability density of yi  is

f y b y x b y x bi i m

i

i i i i ii
( | , ( ))

( ) | ( )|

exp( ( )’ ( ) ( )Σ
Σ

Σφ
π φ

φ= − − −
−

−1

2

1

2
2

1

2

1

The vector of both fixed and random parameters is

θ φ= ( , )b .  So the maximized log likelihood is then
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From here  AIC can be computed easily with d being the
sum of both the fixed and random effects parameters.  The
SAS system version 6.11 gives this value AIC for both the
maximum likelihood and the restricted maximum
likelihood case (2).  One can also compute the trace term

of  Σ Ω
∧ −∧ 1

given in (2) since the density function of the
fitted model is known.

There are two different methods presented here for
selecting the "best" or the "smallest AIC" model among
all the models under consideration.  The first method
essentially identifies all the possible mean functions and
all the possible variance-covariance structures applicable
to the question of interest.  The number of possible
models for consideration includes all combinations
resulted from both the mean and variance-covariance
structures.  For each of these models, AIC is then
computed and the model with minimum AIC is selected.

The second method recommended by Wolfinger and
Diggle (1,2,10) has the following steps :  First, using the
most complex mean structure under consideration, select
the best variance-covariance structure using the restricted
maximum likelihood (REML). REML which focuses on
the covariance side of the model should be used in place
of the likelihood. Let AIC_R denotes AIC derived from
REML : AIC_R = -2*(Restricted likelihood) + 2*(#
covariance parameters).  The variance-covariance
structure with the smallest AIC_R is selected. Then using
this variance-covariance structure, go back and use AIC to
select the best mean structure.  In the following example,
both methods will be illustrated.

4.0 Example 1

The data are from 1006 subjects who participated in an
epidemiology study on aging. Each subject was measured
every minute for 3 to 30 minutes (TIME) from the start of
a treadmill test.  The response called VO2KG, which
measures physical fitness, is the amount of expended
energy from exercise.  The higher the VO2KG, the better
the physical performance.  DURATION stands for the
total time (minutes) the subject was able to exercise.
AGE is in years. The analysis is done for each gender.
This is a repeated measures study where the objective is to
construct the normogram shown in figure 1. Table 1
shows all the mean structures and variance-covariances of
interest.  A total of 18 models were fitted, each has a AIC
value. For each of 18 models considered, the rounded AIC
values are given in table 1.

Table 1 :  AIC values for all models considered

TIME DURA
TION

AGE TIME+
DURA
TION

TIME
+
AGE

TIME
+
DURA
TION+
AGE

Simple 80201 96706 97366 78741 79899 78683
CS 65320 94723 94768 65041 65118 65034
AR(1) 61706 63680 63700 61392 61525 61384
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The minimum value of AIC=61384 from the model with
mean structure of TIME+DURATION+AGE and
variance-covariance AR(1) indicates the best model
among the 18 considered.  The predicted value of the
response VO2KG was computed from this model and then
smoothed to allow the construction of the normogram
which the physician can use to classify the patient into the
appropriate percentile category. Figure 1 showed the
normogram for the male group constructed by using the
predicted VO2KG from the selected model.

Using method 2, the model with the most complex mean
structure among those considered is the one with
TIME+DURATION+AGE.  This model is fitted using the
three variance-covariance structures and the AIC_R is
minimum for AR(1).  Then using AIC to reduce the mean
structure.  In this case AIC chooses the mean structure
TIME+DURATION+AGE so the model selected is
exactly the same as the one chosen in method 1.

5.0 Example 2

Data collected on 9 individuals, each had 3 visits (one or
two weeks apart, except for one subject with one visit, and
one other subject with two visits).  For each visit, one
measurement was made on each eye to assess the
permeability (Pdc) to sodium fluorescein of the corneal
epithelium.  The objective is to obtain the variance
component estimates from the best model. There are five
mean structures of interest (intercept, eye, visit, eye+visit,
eye+visit+eye*visit) and five variance-covariance
structures of interest (simple, compound symmetry,
compound symmetry+eye, compound symmetry+visit,
compound symmetry+eye+visit) resulting in 25 models. In
this description of the candidate models,  compound

symmetry+eye for example, means that the R matrix in
PROC Mixed specification is of type compound symmetry
and ‘eye’ is the random effect. Figure 2 shows the AIC for
all 25 models, and the lowest AIC (the best model), is
from the model with ‘eye’ as the only fixed effect, and
compound symmetry as the variance-covariance structure.

Cov Structure Simple CS CS+Eye
CS+Visit CS+Eye+Visit
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Appendix 1 shows the SAS macro program for automating
the selection procedure for this example.  Also using the
second method, the same model was chosen as the best
model.

6.0 Additional issues

The AIC is known to be inconsistent (1,8,9).  Other
criteria such CAIC (1), SBC (7), HQ (3) are consistent
criteria which are also available in SAS 6.11. Model
selection using formula (2) which has the trace term may
have better consistency property than the AIC but this has
not been implemented. Using simulation, we are currently
evaluating the performance and consistency of the
criterion using the trace term formula (2).  Linhart and
Zuchini (7) also discuss other discrepancy measures which
emphasize on the fixed effects side of the linear mixed-
effects model. In certain practical situations, these may be
preferable to the Kullback-Liebler based criteria.

7.0 Conclusion

This papers reviews some fundamental concepts of
the AIC and shows how model selection for linear
mixed-effects models can be done using AIC.
Analysts are encouraged to utilize selection criteria
such as AIC and others which are already
implemented in the SAS software. We presented
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two different procedures for selecting the best
model.  The procedure suggested by Diggle and
Wolfinger of using REML for variance-covariance
structure selection, and ML for mean structure
selection has a computational advantage.  The
number of possible models evaluated for this
procedure is equal to the sum of the mean structures
and variance-covariance structures in consideration.
The method we proposed using all combinations of
mean structures and variance-covariance structures
of interest is more computationally expensive
especially when the number of mean structures
and/or variance-covariance structures is large.
However, this method provides a more
comprehensive examination of all  models
evaluated.
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Appendix 1

/*********************************************
Program  :       ex5.sas
Time     :       5-16-96 3:33:07 pm
By      :       Long Ngo
Input     :       e:\brand\pcerept\saslib\pcerept2.sd2
Output    :
Purpose    :       Automating the macro

for model selection for example 2
implementing adjustment for AIC and
consistent AIC estimate.

*********************************************/
options ls=80 ps=60 pageno=1 mprint;;
libname rjb ’e:\brand\pcerept\saslib’;
title1 ’ex5.sas’;
data a1;
  set rjb.pcerept2;
  format _all_;      *strip all defined formats off the data;
run;
proc sort;
  by id;
run;
data rjb.aicinfo;    *establish the final data set structure;
  length mean $25 randvar repttype $15 criteria $3 aic
nobs nfixed ncov nsubj 5;
run;
%macro v(mean,repttype);  * macro for handling just
fixed effects;
proc mixed data=a1 method=ml;
class id eye visit;
model lnpce = &mean ;
repeated / type=&repttype subject=id;
title2 "Model with Mean Structure = &mean ";
title3 "Repeated Type = &repttype";
make ’fitting’ out=aout;
make ’SolutionF’ out=aoutfix;
make ’CovParms’ out=aoutcov;
run;
%f;
%mend;
%macro vr(mean,randvar,repttype);  * macro for handling
both fixed and random effects;
proc mixed data=a1 method=ml;
class id eye visit;
model lnpce = &mean ;
random &randvar / subject=id;
repeated / type=&repttype subject=id;
title2 "Model with Mean Structure = &mean ";
title3 "Random Effects = &randvar";
title4 "Repeated Type = &repttype";
make ’fitting’ out=aout;
make ’SolutionF’ out=aoutfix;
make ’CovParms’ out=aoutcov;
run;
%f;
%mend;

%macro f;
data aicinfo;
  length mean $25 randvar repttype $15;
  set aout;
  mean="&mean";
  randvar="&randvar";
  repttype="&repttype";
  where descr=:’Akaike’;
  aic=value;
run;
data nobs;
  set aout;
  where descr=:’Observation’;
  nobs=value;  *obtain number of observations in analysis;
run;
data tfix1;
  set aoutfix (keep=est);
  if est ne 0;
run;
proc univariate noprint;
  var est;
  output out=nfixed n=nfixed;  *get the number of fixed
effect parameters;
run;
data tcov;
  set aoutcov (keep=est);
run;
proc univariate noprint;
  var est;
  output out=ncov n=ncov;  *get the number of covariance
parameters;
run;
*get the number of available subjects for each model;
data nsubj;
  set rjb.pcerept2 (keep=id);
run;
proc sort;
  by id;
run;
data nsubj;
  set nsubj;
  by id;
  if first.id;
  c=1;
run;
proc univariate noprint;
  var c;
  output out=nsubj sum=nsubj;
run;
* construct the desired data set;
data aicinfo;
  merge aicinfo nfixed nobs ncov nsubj;
run;
data rjb.aicinfo;
   set rjb.aicinfo aicinfo;
run;
%mend;
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*(mean repeated type for macro %v) and (mean random
repeated type for %vr);

%v(/ s,simple);
%v(/ s,cs);
%vr(/ s,eye,cs);
%vr(/ s,visit,cs);
%vr(/ s,eye visit, cs);

%v(eye / s,simple);
%v(eye / s,cs);
%vr(eye / s,eye,cs);
%vr(eye / s,visit,cs);
%vr(eye / s,eye visit, cs);

%v(visit / s,simple);
%v(visit / s,cs);
%vr(visit / s,eye,cs);
%vr(visit / s,visit,cs);
%vr(visit / s,eye visit, cs);

%v(eye visit / s,simple);
%v(eye visit / s,cs);
%vr(eye visit / s,eye,cs);
%vr(eye visit / s,visit,cs);
%vr(eye visit / s ,eye visit, cs);

%v(eye visit eye*visit / s,simple);
%v(eye visit eye*visit / s,cs);
%vr(eye visit eye*visit / s,eye,cs);
%vr(eye visit eye*visit / s,visit,cs);
%vr(eye visit eye*visit / s,eye visit, cs);

proc format;
  value

meantype
1=’Intercept’
2=’Eye’
3=’Visit’
4=’Eye Visit’
5=’Eye Visit Eye*Visit’;

  value covtype
1=’Simple’
2=’CS’
3=’CS+EYE’
4=’CS+Visit’
5=’CS+Eye+Visit’;

run;
* set up the data for graphing;

data rjb.t1;
  set rjb.aicinfo;
  if randvar =: ’&’ then randvar=’None’;
  if _n_=1 then delete; *drop the null case used for setting;
  if mean=’/ s’ then do;
     mean=’Intercept’;
     meantype=1;

  end; else
  if mean=’eye / s’ then meantype=2; else
  if mean=’visit / s’ then meantype=3; else
  if mean=’eye visit / s’ then meantype=4; else
  if mean=’eye visit eye*visit / s’ then meantype=5;

  if randvar=’None’ and repttype=’simple’ then covtype=1;
else
  if randvar=’None’ and repttype=’cs’     then covtype=2;
else
  if randvar=’eye’  and repttype=’cs’     then covtype=3; else
  if randvar=’visit’ and repttype=’cs’    then covtype=4; else
  if randvar=’eye visit’ and repttype=’cs’ then covtype=5;
  if meantype=1 then ncov=ncov-1; *adjust for the resid;
  logl = aic+ncov ; *Mixed defines AIC = logl - number of
cov parameters;

    *this is to get back logl value;
  aic = -2*logl + 2*(nfixed+ncov); *recompute original
def. of AIC;
  aic_con = -2*logl + (nfixed+ncov)*(log(nsubj)+1);
*consistent AIC estimate;
  label meantype=’Mean Structure’

covtype =’Cov Structure’
aic = ’Original AIC’
aic_con = ’Consistent AIC’
logl = ’Log Likelihood’
nobs = ’Number of Obs in Analysis’
nsubj = ’Number of Subjects in Analysis’
nfixed = ’Number of Fixed Effects Parameters’
ncov = ’Number of COV parameters’;

    format meantype meantype. covtype covtype.;
    drop descr value mean;
run;
proc sort ;
  by meantype covtype;
run;
goptions device = winprtm;
symbol1 c=black v=point i=j l=1 width=3;
symbol2 c=black v=circle i=j l=2 width=3;
symbol3 c=black v=plus i=j l=3 width=3;
symbol4 c=black v=star i=j l=4 width=3;
symbol5 c=black v=diamond i=j l=5 width=3;
axis1 order = (1 to 5) ;
proc gplot;
  plot aic * meantype = covtype / haxis=axis1;
title1 h=0.75 ’Figure 1 : AIC Values Computed for 25
Models in Example 2’;
run;
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